
Survey on Matching in the Graph-Stream Model

Mrinal Anand
IIT Gandhinagar
mrinal.anand@iitgn.ac.in

Kishen N. Gowda
IIT Gandhinagar
kishen.gowda@iitgn.ac.in

Vraj Patel
IIT Gandhinagar
vraj.patel@iitgn.ac.in

Abstract

In recent years, tremendous amount of network data has been generated and graph is a natural way to
represent many of these datasets. Due to the massive size of these graphs, it is not possible to store
the entire graph into main memory, creating the need for use of methods like data streaming and
distributed processing to generate insights for such graphs. In this survey we mainly focus on work
done on the matching problem for graph streams under both single pass and multi pass streaming
settings.

Keywords and phrases Semi-Streaming Model, Graph Streams, Approximation Algorithms, Maximum
Matching, Multi-pass

1 Introduction

In the past two decades, the world has witnessed a huge improvement in computational
hardware in terms of processing power and storage capacity of machines. As a result there
has been a rise in mining of massive real world datasets for insights. Most of these massive
dataset can be naturally represented in the form of graphs, e.g. social network can be
represented as tabular data as well as a graph but graphs are a more natural choice for
representation of social network. The YouTube social network dataset [22] had a total of
1,134,890 nodes and 2,987,624 edges in the year 2012. Some other examples of graph datasets
are road networks, bitcoin network, citation network etc.

However, analysing these massive graphs via classical algorithms can be challenging task
given the sheer size of graph. There are mainly two approaches to handle these massive
graphs - (i) Data Streaming and (ii) Distributed Processing. In data streaming model the
input is stream of data which is read sequentially using only sub-linear space. In case of
graph streaming the input can be either sequence of edges or nodes (possibly both) of a
graph. The main advantages of using streaming algorithm is that it can handle massive data
with limited amount of random access memory, other benefit of streaming model is that it can
many-a-time be adapted to be used in an online setting for real-time computation scenarios.

Streaming algorithms use polylogarithmic [O(poly log n)] memory space in the size of the
input (n). It has been shown in [6] that polylogarithmic memory is insufficient for many
graph problems. Even the basic bipartiteness or connectivity problems in graph require
Ω(n) space in memory. Therefore most of the recent work [7, 19] involves semi-streaming

mailto:mrinal.anand@iitgn.ac.in
mailto:kishen.gowda@iitgn.ac.in
mailto:vraj.patel@iitgn.ac.in

2 Survey on Matching in the Graph-Stream Model

model that uses O(npoly log n) space where n is number of nodes in the graph. Under
semi-streaming setting most of the graph problems becomes reasonable to solve.

MAXIMUM MATCHING is a very well-studied fundamental problem in combinatorial optim-
ization. In an unweighted bipartite graph, the optimization problem is to find a maximum
cardinality matching. MAXIMUM MATCHING can be defined as a set of edges of maximum size
such that no two adjacent edges are selected. MAXIMUM BIPARTITE MATCHING is a special
case of maximum matching, in which graph is bipartite. It has been shown that greedy
approach for maximal matching yields 1

2 approximation of maximum matching. It has been
proved in [9] that approximation ratio better than

(
1 − 1

e

)
is not possible for semi-streaming

models. While we can’t do better than
(
1 − 1

e

)
but it still have some scope for improvement.

In this survey, we will be mainly focusing on recent advancement in the field of MAXIMUM

MATCHING and MAXIMUM BIPARTITE MATCHING using semi-streaming models. We will
be discussing results for single pass and multiple pass settings under both random and
adversarial order assumptions.

2 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. We also denote V(G) to be the
vertex set and E(G) to be the edge set of graph G. If G is bipartite with bipartition A and
B then we write G = (A,B,E) and we denote V = A ∪ B. Let n = |V | and m = |E|. For an
edge e ∈ E with endpoints u, v ∈ V, we denote e by (u, v). Given a vertex v ∈ V, degG(v)
denotes the degree of the vertex v (no. of edges incident on v) in the graph G = (V,E). We
sometimes use deg(v) when the graph in context is clear. Given a subset of edges F ⊆ E,
V(F) denotes set of endpoints of edges in F. In case of a bipartite graph G = (A,B,E), A(F)
(or B(F)) denotes the set of endpoints of edges in F which belong to A(or B). Also, given a
vertex v, degF(v) denotes the no. of edges in F which are incident on v.

I Definition 1. (Matching): A matching in a graph G = (V,E) is a subset of edges M ⊆ E
such that ∀v ∈ V : degM(v) 6 1. A maximum matching M? is a matching such that for any
other matching M ′, |M?| > |M ′|. A maximal matching M is a matching that is inclusive-wise
maximal, i.e. ∀e ∈ E \M, M ∪ {e} is not a matching.

For a subset of edges F ⊆ E, opt(F) denotes the maximum matching in the graph G restricted
to edges F. We may substitute opt(G) for opt(E) and M? for opt(G). For a set of vertices S
and a set of edges F, let S(F) denote the subset of vertices of S covered (or matched) by F.
Further, S(F) := S \ S(F). For S ⊆ V, G[S] denotes the graph induced on the vertex set S. We
write opt(S) for opt(G[S]), i.e. a maximum matching in G[S]. In case of bipartite graphs, for
SA ⊆ A and SB ⊆ B we write opt(SA,SB) for opt(G[AS ∪ BS]). Moreover, for two sets S1
and S2, S1 ⊕ S2 denotes the symmetric difference ((S1 \ S2) ∪ (S2 \ S1)) of the two sets. For
a matching M and a vertex v, M(v) = u if either (u, v) ∈M or (v,u) ∈M. Also for given a
graph G and a matching M of G, a vertex v is called a matched vertex (or node) if there is an
edge incident on v in M and free vertex (or node) otherwise.

I Definition 2. (Augmenting Path): Let p > 3 be an odd integer. Then a length p augmenting
path with respect to a matching M in a graph G = (V,E) is a path P = (v1, . . . , vp+1) such
that v1, vp+1 /∈ V(M) and for i 6 p−1

2 , (v2i, v2i+1) ∈M and (v2i−1, v2i) /∈M.

M. Anand, K. Gowda, V. Patel 3

In other words, an augmenting path with respect to a matching is a path of odd length
which alternates between traversing an edge not in the matching and an edge that is not in
the matching and the starting and ending points are not in the matching in consideration.
Since an augmenting path is of odd length and it starts and ends by traversing an edge not
in the matching, the number of edges not in the matching (say Eodd) is exactly one more
than the number of edges in the matching (say Eeven). What this means is that if there is an
augmenting path with respect to a matching in M, then M ′ =M \ Eeven ∪ Eodd is a matching
of size |M|+ 1.

Now we introduce some notation and terminology which is commonly used in the graph
streaming literature. The graph stream for an input graph G(V,E) to be a sequence of edges
arriving one at a time in some order. We define n to be the number of vertices in the graph.
Let Π(G) be the set of all possible permutations of edges in E. The input for the algorithms
is some π ∈ Π(G). Further, π[i] denotes the i-th edge of π, π[i, j] represents the sequence
of edges π[i],π[i + 1], . . . ,π[j], π(i, j] represents the sequence of edges π[i + 1, j] and π[i, j)
represents the sequence of edges π[i, j− 1]. When i, j are real numbers, we define π[i] to be
the same as π[bic] and thus π[i, j] = π[bic, bjc].

A k-pass semi-streaming algorithm with update time t(n) is one where for any given π ∈ Π(G),
the algorithm goes through (or reads) the entire stream π at most k times (i.e. makes at most
k “passes” over π) while maintaining a random access memory of size O(n polylog n) and
taking at most O(t(n)) time between consecutive reads. One read operation on any stream is
assumed to take constant time.

In the analysis of semi-streaming algorithms, assumptions on the ordering of the data in the
stream plays a big role in the analysis. Much of the earliest literature on streaming considered
the adversarial order of data i.e. the order of the stream is chosen by an adversary to yield
the worst possible running time for the algorithm. Therefore, the guarantees given were
always with respect to the worst case scenarios. Such adversarial order assumption is not a
very practical assumption to work with as in reality, there is no such adversaries who are in
control of the data and in some sense, the ordering of the data can be assumed to be random.
This is the core reasoning behind the definition of random order streams where the stream is
assumed to be randomly samples from all possible orderings and the expected guarantee is
analysed and reported under this assumption.

In the current context of matching, even in the semi-streaming model, the problem cannot be
solved exactly in constant number of passes. Therefore, any semi-streaming model for the
maximum matching problem which takes constant number of passed returns an approximate
matching. Therefore, the guarantee in consideration here will be the approximation ratio.
A deterministic algorithm A that solves the matching problem is said to be c-approximate
if for any given input graph G, A outputs a matching M such that |M| 6 c · |opt(G)|. In the
context of random-order streams, the deterministic algorithm is said to be c-approximate
if the expected approximation ratio is c, that is E[|M|] > c · |opt(G)| (where the expectation
is taken over all possible arrival orders). When considering randomized semi-streaming
algorithms for matching, the algorithm is said to be c-approximate if E[|M|] > c · |opt(G)|
where the expectation is taken over the internal random coins rather than the arrival order.

Do note that in all these contexts, during the analysis of the guarantees, the worst case
is considered against the graph G is always in consideration (i.e. the graph is considered
adversarial/worst case).

4 Survey on Matching in the Graph-Stream Model

3 Semi-Streaming Algorithms for Unweighted Maximum Matching

The simplest and the earliest algorithm for MAXIMUM MATCHING in the semi-streaming model
is the Greedy matching algorithm (Algorithm 1) which does the following: Start with an
empty matching, when an edge arrives, if both the endpoints of the edge are not already part
of any edge in the matching, add the edge to the matching. This Greedy algorithm is a 1
pass 0.5-approximate algorithm which takes linear space and has O(∞) update time. The
fact that it is a 0.5 approximation follows from the fact that for every edge (u, v) belonging
to a maximum matching, the greedy matching being constructed must contain an edge with
at least one of u or v as an endpoint.

Algorithm 1 Greedy(π) [15]

Require :The input stream π is an edge stream of a graph G = (V,E)
1 begin
2 M← ∅
3 while edge stream not empty do
4 e = v1v2 ← next edge in stream
5 if {v1, v2} ∩ V(M) = ∅ then
6 M←M ∪ {e}

7 return M

The surprising fact is that to this date, this simple algorithm remains the best one-pass
deterministic algorithm for MAXIMUM MATCHING as well as MAXIMUM BIPARTITE MATCHING

in the adversarial stream order setting.

3.1 Algorithms with Multiple Passes

The standard approach adapted to construct bigger matchings is to find augmenting paths.
McGregor [17] presented a 1

1+ε approximation for MAXIMUM MATCHING on random stream
order. The algorithm first finds a maximal matching using greedy algorithm in one pass
followed by multiple passes to construct augmenting paths. To minimize the no. of passes
required to construct the augmenting paths, the author constructs an auxiliary layered graph
G ′. This graph is constructed based on a simple randomized procedure. After constructing
the graph G ′, augmenting paths are constructed over multiple passes. The number of passes
required in this algorithm is a complicated function depending heavily on ε (see [17]).

Based on the idea explained (in detail) in Algorithm 2 (described in due course), an O
(
log 1

ε

ε

)
-

pass semi-streaming algorithm that computes a 2
3 − ε approximation to the MAXIMUM

BIPARTITE MATCHING problem was presented in [7].

3.2 Algorithms with fewer passes

In this section, we will survey semi-streaming algorithms for MAXIMUM MATCHING and
MAXIMUM BIPARTITE MATCHING with few (6 3) passes.

To improve the Greedy Algorithm, a simple strategy is to compute a maximal matching MG

in one pass, and then utilize the second and third passes to find 3-augmenting paths. The
existence of such 3-augmenting paths is based on the following lemma:

M. Anand, K. Gowda, V. Patel 5

I Theorem 3. ([15]) Let ε > 0. Let M be a maximal matching of G s.t. |M| 6
(1

2 + ε
)
|M?|.

Then M contains at least
(1

2 − 3ε
)
|M?| 3-augmentable paths.

The 3-augmenting paths are found as follows. Firstly, compute a maximal matchingMG using
the Greedy algorithm. According to Theorem 3, eitherMG is better than 1

2 approximation, or
if MG is close to 1

2 approximation, then most of the edges in MG are 3-augmentable. So, in
a second pass, compute a maximal matching ML between the matched vertices B(MG) and
the free vertices A(MG) using the Greedy algorithm. ML will be at least of size 1

2 times the
number of 3-augmenting paths. Edges from ML will serve as the start of length 3 augmenting
paths. Finally, in a third pass, complete these 3-augmenting paths with edges of MG and ML

by computing another maximal matching MR.

Algorithm 2 Three Pass Bipartite Matching Algorithm [15]

Require :The input stream π is an edge stream of a bipartite graph G = (A,B,E)
1 begin
2 MG,ML,MR ← ∅
3 1stpass: MG ← Greedy(π)
4 GL ← Induced Graph between A(MG) and B(MG)

5 2ndpass: ML ← Greedy(π ∩GL)
6 GR ← Induced Graph between B(MG) and {a ∈ A(MG) :MG(a) ∈ B(ML)}

7 3rdpass: MR ← Greedy(π ∩GR)
8 M← matching obtained from MG augmented by ML ∪MR

9 return M

Konrad et. al. [15] presented a series of algorithms with one or two passes for the MAXIMUM

BIPARTITE MATCHING problem. They essentially simulate the three-pass algorithm (Algorithm
2) in one or two passes and bound the performance based on some crucial properties of the
Greedy algorithm.

Firstly, they claim and prove that if in expectation over all input edges sequences the matching
computed by the Greedy algorithm is close to a 1

2 approximation, then Greedy builds this
matching early on. In other words, Greedy converges quickly (see Lemma 2 in [15]).

Based on this property, they presented the following deterministic one-pass 0.505 approxima-
tion semi-streaming algorithm for the MAXIMUM BIPARTITE MATCHING problem on random
stream orders (Algorithm 3). Essentially, the input stream π is split into three phases:
π[1,αm],π(αm,βm] and π(βm,m] (for 0 < α < β < 1), where these three phases corres-
pond to the three passes in Algorithm 2. The matchings obtained in these three phases
are denoted by M0,M1 and M2 respectively. Either the Greedy algorithm already performs
well, or the matching obtained by Greedy is close to a 1

2 approximation. In the latter case,
the Greedy algorithm converges early on, hence M0 is a good representative of the greedy
solution. Also, by Theorem 3 almost all the edges of M0 are 3-augmentable. Thus, the
3-augmenting paths are found with the help of the matchingsM1 andM2 in a similar manner
as in Algorithm 2.

Furthermore, they showed that this algorithm can be adapted to general graphs yielding
a deterministic one-pass 0.503 approximation semi-streaming algorithm for the MAXIMUM

MATCHING problem on random stream orders.

Secondly, Konrad et. al. present the following property of the Greedy algorithm (See Theorem
4). According to this property, in expectation, any maximal matching of the graph induced on

6 Survey on Matching in the Graph-Stream Model

Algorithm 3 Single Pass Bipartite Matching Algorithm [15]

Require :The input stream π is an edge stream of a bipartite graph G = (A,B,E)
1 begin
2 α← 0.4312,β← 0.7595
3 MG ← Greedy(π)
4 M0 ← Greedy(π[1,αm]), matching obtained by Greedy on the first bαmc edges
5 F1 ← Induced Graph between A(M0) and B(M0)

6 M1 ← Greedy(F1 ∩ π(αm,βm]), matching obtained by Greedy on edges
bαmc+ 1 through bβmc that intersect F1

7 F2 ← Induced Graph between B(M0) and {a ∈ A(M0) :M0(a) ∈ B(M1)}

8 M2 ← Greedy(F1 ∩ π(βm,m]), matching obtained by Greedy on edges bβmc+ 1
through m that intersects F2

9 M← matching obtained from M0 augmented by M1 ∪M2
10 return larger of the two matchings MG and M

On Line 3,MG is computed in parallel

a subset A ′ ⊆ A and B contains a big fraction of the edges which are part of 3-augmenting
paths of edges in a maximal matching of G.

I Theorem 4. ([15]) Let 0 < p 6 1, let G = (A,B,E) be a bipartite graph. Let A ′ be an
independent random sample such that Pr[a ∈ A ′] = p,∀a ∈ A. Let F be the induced bipartite
graph between A ′ and B. Then for any input stream π

EA′ [|Greedy(F ∩ π)|] > p

p+ 1 |opt(G)|

Based on the above property, Konrad et. al. present the following randomized two-pass
0.519 approximation semi-streaming algorithm to solve the MAXIMUM BIPARTITE MATCHING

problem on arbitrary stream orders (Algorithm 4). Either the greedy algorithm already
performs well, or the matching obtained by Greedy is close to a 1

2 approximation. In the
latter case, applying Theorem 4, an independent random sample A ′ ⊆ A is picked such that
Pr[a ∈ A ′] = p for all a. In the first pass, the algorithm computes a greedy matchingM0 of G
and a matching M ′ of the graph induced on the vertices A ′ ∪B. Some edges of M ′ will serve
as a start of 3-augmenting paths, call them M1(⊆M ′). In a second pass these 3-augmenting
paths with edges of M0 and M1 are completed with another maximal matching M2.

Furthermore, they present a deterministic two-pass algorithm on the same line as the above
randomized algorithm. Instead of considering a maximal matching of a random subset
A ′ ⊆ A, here an edge set S is chosen such that it contains edges which are part of 3-
augmenting paths with edges of M0 (obtained from Greedy matching). The set S is an
incomplete λ-bounded semi-matching, i.e. S ⊆ E such that degS(a) 6 1 and degS(b) 6 λ,
for all a ∈ A and b ∈ B. A similar theorem like Theorem 4 is claimed and proved. This
gives a deterministic two-pass 0.519 approximation semi-streaming algorithm to solve the
MAXIMUM BIPARTITE MATCHING problem on arbitrary stream orders. Further, they adapted
this algorithm to general graphs giving a deterministic two-pass 0.5071 approximation semi-
streaming algorithm for the MAXIMUM MATCHING problem on arbitrary stream orders.

Gamlath et. al. and Konrad [8, 12] presented improved one-pass algorithms for MAXIMUM BI-
PARTITE MATCHING (0.512 approximation and 0.539 approximation, respectively) on random
stream orders. The algorithm by Gamlath et. al. works for the entire class of Triangle-free

M. Anand, K. Gowda, V. Patel 7

Algorithm 4 Two Pass Bipartite Matching Algorithm [15]

Require :The input stream π is an edge stream of a bipartite graph G = (A,B,E)
1 begin
2 p←

√
2 − 1

3 Pick an independent random sample A ′ ⊆ A such that Pr[a ∈ A ′] = p,∀a ∈ A
4 F1 ← Induced Graph between A ′ and B
5 1stpass: M0 ← Greedy(π) and M ′ ← Greedy(F1 ∩ π)
6 M1 ← {e ∈M ′ : e is between B(M0) and A(M0)}

7 F2 ← Induced Graph between B(M0) and {a ∈ A(M0) :M0(a) ∈ B(M1)}

8 2ndpass: M2 ← Greedy(F2 ∩ π)
9 M← matching obtained from M0 augmented by M1 ∪M2

10 return M

graphs (a super-set of Bipartite Graphs). Their algorithm also works on finding 3-augmenting
paths. Gamlath et. al. also adapted their technique to general graphs and presented a
one-pass 0.506 approximation algorithm on random stream orders. The work by Konrad
[12] is based on finding augmenting paths along with a residual sparsity property of the
random order Greedy Matching Algorithm [14]. Konrad also presented a two pass 0.5857
approximation algorithm for MAXIMUM BIPARTITE MATCHING on arbitrary stream orders, as a
side result of his technique used to finding augmenting paths.

Recently in SODA ’20, Farhadi et. al. [5] presented a deterministic one-pass 0.6 approximation
algorithm for MAXIMUM BIPARTITE MATCHING on random stream orders. Unlike previous
algorithms, this algorithm finds augmenting paths with length 5. They also provide a black-
box reduction from the general MAXIMUM MATCHING problem to the MAXIMUM BIPARTITE

MATCHING problem when edges arrive in random order, i.e. assuming that the approximation
ratio of the MAXIMUM BIPARTITE MATCHING problem is p on random stream orders, we get
an algorithm for MAXIMUM MATCHING with approximation 2p

2p+1 with high probabilty on the
number of vertices n. Hence, this results in a one-pass 0.545 approximation algorithm for
MAXIMUM MATCHING on random stream orders.

4 Empirical Comparison

For the empirical results, we focus on MAXIMUM BIPARTITE MATCHING. The datasets which
are used are the IMDB dataset and the NotreDameActors dataset from the SuiteSparse Matrix
Collection which are large bipartite graphs. 1 The experiment involved running each of the
algorithms in consideration on the same shuffled stream created. We report the average
over 10 shuffles of the stream for each algorithm. All of the algorithms implemented are for
bipartite matching from Konrad et. al. [15].

1Implementation can be found in this Github Repository: https://github.com/alphatron1999/GraphStreamingMatching

https://github.com/alphatron1999/GraphStreamingMatching

8 Survey on Matching in the Graph-Stream Model

Table 1 Size of the Datasets Used

Dataset Number of Nodes Number of Edges Max. Size Matching

IMDB 1,324,748 3,782,463 250,516

NotreDameActors (NDA) 520,223 1,470,404 114,762

Table 2 Results Obtained (here R: Randomized, D: Deterministic)

Dataset Optimum Greedy One Pass Two Pass (R) Two Pass (D) Three Pass

IMDB 250,516 215,997.6 215,997.6 227,317 238,831.2 240,097.6

NDA 114,762 97,293.2 97,293.2 100,744.5 106,448.6 108,300.5

Notice that the result for Greedy Algorithm and One Pass Deterministic are exactly the same
and this matches up with the theoretical expectation because according to the lemma the
One Pass algorithm only works better than Greedy when the Greedy algorithm gives close to
worst case performance but for these dataset, Greedy algorithm itself performs really well.

5 Conclusion

In this work, we surveyed some of the pioneer algorithms for MAXIMUM MATCHING in the
semi-streaming model. We discussed in detail some general and latest techniques used as well
as some important properties of the Greedy Algorithm (which played a key role in improving
the Greedy Algorithm). We also conducted an empirical comparison between some of these
algorithms on massive real world datasets.

5.1 Related Work:

Significant work has been done for the Weighted version of MAXIMUM MATCHING. One of
the earliest work was by Feigenbaum et. al. [7] who presented a one-pass 1

6 approximation
for Weighted MAXIMUM MATCHING for arbitrary stream orders. Later, McGregor [17] gave
a 1

2+ε approximation algorithm with multiple passes (heavily dependent on ε) on random
stream orders. Recently, Paz et. al. [20] gave a 1

2+ε approximation in single pass on random
stream orders. Techniques like Linear Programming were used by Ahn et. al. [1] to give a
1 − ε approximation with multiple passes on arbitrary stream orders.

A slightly different line of research focuses on dynamic streaming, in which removal of edges
from graph is also allowed. Some works in this area are [13, 2]. Also another interesting
problem is the online version of Maximum Matching. Earliest work was by Vazirani et. al
who gave a 1 − 1

e
approximation. Some latest work on online matching is in [21].

M. Anand, K. Gowda, V. Patel 9

5.2 Future Directions:

There are many future directions of research in the specific case of Matching itself. First
directions is to break the 1

2 approximation barrier which has been an open problem for a
long time. Secondly, finding improved upper bounds is also an interesting line of research
(maybe 1

2 approximation is the actual upper bound, instead of 1 − 1
e
). Also, improving the

algorithms in special settings like random stream orders, multiple passes and special classes
of graphs is also an interesting direction. It would also be convenient if this survey could be
improved to a more general survey on matching and include techniques from the various
variants of the problem.

References

[1] Kook Jin Ahn and Sudipto Guha. ‘Linear Programming in the Semi-streaming Model
with Application to the Maximum Matching Problem’. In: CoRR abs/1104.2315 (2011).
arXiv: 1104.2315. URL: http://arxiv.org/abs/1104.2315.

[2] Sepehr Assadi et al. ‘Maximum matchings in dynamic graph streams and the simul-
taneous communication model’. English (US). In: 27th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016. Ed. by Robert Krauthgamer. Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms. 27th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016 ; Conference date: 10-01-2016 Through
12-01-2016. Association for Computing Machinery, Jan. 2016, pp. 1345–1364.

[3] Vladimir Boginski, Sergiy Butenko and Panos Pardalos. ‘Network models of massive
datasets’. In: Comput. Sci. Inf. Syst. 1 (Jan. 2004), pp. 75–89. DOI: 10.2298/CSIS0401075B.

[4] Sebastian Eggert et al. ‘Bipartite Matching in the Semi-streaming Model’. In: Algorith-
mica 63 (2011), pp. 490–508.

[5] Alireza Farhadi et al. ‘Approximate Maximum Matching in Random Streams’. In:
Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA ’20. Salt Lake City, Utah: Society for Industrial and Applied Mathematics, 2020,
pp. 1773–1785.

[6] Joan Feigenbaum et al. ‘Graph Distances in the Data-Stream Model’. In: SIAM Journal
on Computing 38.5 (2009), pp. 1709–1727. DOI: 10.1137/070683155. eprint: https:
//doi.org/10.1137/070683155. URL: https://doi.org/10.1137/070683155.

[7] Joan Feigenbaum et al. ‘On Graph Problems in a Semi-Streaming Model’. In: Theoretical
Computer Science 348 (Dec. 2005), pp. 207–216. DOI: 10.1016/j.tcs.2005.09.013.

[8] Buddhima Gamlath et al. ‘Weighted Matchings via Unweighted Augmentations’. In:
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. PODC
’19. Toronto ON, Canada: Association for Computing Machinery, 2019, pp. 491–500.
ISBN: 9781450362177. DOI: 10.1145/3293611.3331603. URL: https://doi.org/10.
1145/3293611.3331603.

[9] Ashish Goel, Michael Kapralov and Sanjeev Khanna. ‘On the communication and
streaming complexity of maximum bipartite matching’. In: Proceedings of the 2012
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 468–485. DOI: 10.1137/
1 . 9781611973099 . 41. eprint: https : / / epubs . siam . org / doi / pdf / 10 . 1137 /
1.9781611973099.41. URL: https://epubs.siam.org/doi/abs/10.1137/1.
9781611973099.41.

[10] Sagar Kale, Sumedh Tirodkar and Sundar Vishwanathan. ‘Maximum Matching in Two
Passes, Three Passes, and a Few More Passes Over Graph Streams’. In: (Feb. 2017).

https://arxiv.org/abs/1104.2315
http://arxiv.org/abs/1104.2315
https://doi.org/10.2298/CSIS0401075B
https://doi.org/10.1137/070683155
https://doi.org/10.1137/070683155
https://doi.org/10.1137/070683155
https://doi.org/10.1137/070683155
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1137/1.9781611973099.41
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.41
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.41
https://epubs.siam.org/doi/abs/10.1137/1.9781611973099.41
https://epubs.siam.org/doi/abs/10.1137/1.9781611973099.41

10 Survey on Matching in the Graph-Stream Model

[11] R. M. Karp, U. V. Vazirani and V. V. Vazirani. ‘An Optimal Algorithm for On-Line
Bipartite Matching’. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing. STOC ’90. Baltimore, Maryland, USA: Association for Computing
Machinery, 1990, pp. 352–358. ISBN: 0897913612. DOI: 10.1145/100216.100262.
URL: https://doi.org/10.1145/100216.100262.

[12] Christian Konrad. ‘A Simple Augmentation Method for Matchings with Applications to
Streaming Algorithms’. In: MFCS. 2018.

[13] Christian Konrad. ‘Maximum Matching in Turnstile Streams’. In: CoRR abs/1505.01460
(2015). arXiv: 1505.01460. URL: http://arxiv.org/abs/1505.01460.

[14] Christian Konrad. ‘MIS in the Congested Clique Model in O(log log∆) Rounds’. In:
2018.

[15] Christian Konrad, Frédéric Magniez and Claire Mathieu. ‘Maximum Matching in Semi-
streaming with Few Passes’. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques. Ed. by Anupam Gupta et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 231–242. ISBN: 978-3-642-32512-0.

[16] Andrew McGregor. ‘Graph Stream Algorithms: A Survey’. In: SIGMOD Rec. 43.1 (May
2014), pp. 9–20. ISSN: 0163-5808. DOI: 10.1145/2627692.2627694. URL: https:
//doi.org/10.1145/2627692.2627694.

[17] Andrew Mcgregor. ‘Finding Graph Matchings in Data Streams’. In: APPROX-RANDOM.
2005.

[18] Andrew McGregor and Sofya Vorotnikova. ‘A Simple, Space-Efficient, Streaming
Algorithm for Matchings in Low Arboricity Graphs’. In: 1st Symposium on Simplicity
in Algorithms (SOSA 2018). Ed. by Raimund Seidel. Vol. 61. OpenAccess Series in
Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018, 14:1–14:4. ISBN: 978-3-95977-064-4. DOI: 10.4230/OASIcs.SOSA.
2018.14. URL: http://drops.dagstuhl.de/opus/volltexte/2018/8295.

[19] S. Muthukrishnan. ‘Data streams: algorithms and applications’. In: Foundations and
Trends in Theoretical Computer Science 1 (2003).

[20] Ami Paz and Gregory Schwartzman. ‘A (2+ε)-Approximation for Maximum Weight
Matching in the Semi-Streaming Model’. In: CoRR abs/1702.04536 (2017). arXiv:
1702.04536. URL: http://arxiv.org/abs/1702.04536.

[21] Erik Vee, Sergei Vassilvitskii and Jayavel Shanmugasundaram. ‘Optimal Online As-
signment with Forecasts’. In: Proceedings of the 11th ACM Conference on Electronic
Commerce. EC ’10. Cambridge, Massachusetts, USA: Association for Computing Ma-
chinery, 2010, pp. 109–118. ISBN: 9781605588223. DOI: 10.1145/1807342.1807360.
URL: https://doi.org/10.1145/1807342.1807360.

[22] Jaewon Yang and Jure Leskovec. ‘Defining and Evaluating Network Communities
based on Ground-truth’. In: CoRR abs/1205.6233 (2012). arXiv: 1205.6233. URL:
http://arxiv.org/abs/1205.6233.

https://doi.org/10.1145/100216.100262
https://doi.org/10.1145/100216.100262
https://arxiv.org/abs/1505.01460
http://arxiv.org/abs/1505.01460
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.4230/OASIcs.SOSA.2018.14
http://drops.dagstuhl.de/opus/volltexte/2018/8295
https://arxiv.org/abs/1702.04536
http://arxiv.org/abs/1702.04536
https://doi.org/10.1145/1807342.1807360
https://doi.org/10.1145/1807342.1807360
https://arxiv.org/abs/1205.6233
http://arxiv.org/abs/1205.6233

	Introduction
	Preliminaries
	Semi-Streaming Algorithms for Unweighted Maximum Matching
	Algorithms with Multiple Passes
	Algorithms with fewer passes

	Empirical Comparison
	Conclusion
	Related Work:
	Future Directions:

