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Introduction



Rise of Big Data

e In the last few decades, the world has witnessed
exponential growth in the number and size of real world
data.

e Analysing these massive data using classical algorithms is
a challenging task.

e Two approaches to analyze such massive data:

e Data Streaming
e Distributed Processing



Graph Streaming

e Streaming algorithms sequentially scans the input data.

e Input data streams can be in random order or in
adversarial order.

e Specifically, in graph streaming the input stream is of
vertices or edges.

e Streaming algorithm uses O(poly log n) (polylogarithmic)
memory.



Semi-Streaming Model

e Polylogarithmic memory is insufficient for many graph
problems [3].

e Even the basic bipartiteness or connectivity problems in
graphs requires ()(n) space.

e Semi-Streaming Model: Allow O(npoly log n) (or @(n))
space [2, 8].



Maximum Matching



Maximum Matching Problem

Maximum Cardinality Matching

Given a graph G = (V, E), find a subset M C E of
maximum size such that no two adjacent edges are selected.

e Simply called the (Unweighted) Maximum Matching
Problem.

e Maximum Bipartite Matching: Maximum Matching
problem on Bipartite Graphs



Known Results and Bounds

e Fastest Algorithm: O(m+/n) [7]
e Semi-Streaming Model:

e Greedy Algorithm: 1/2 approximation
e Hardness: 1 — 1/e approximation [4]
e Better than 1/27 Open Problem



Algorithms with Multiple Passes

or Random Stream Orders




Existing Semi-Streaming Algorithms

e Multiple passes of stream

e Random Stream Orders



Existing Semi-Streaming Algorithms

e Multiple passes of stream
e Random Stream Orders
e Standard Approach: Finding Augmenting Paths

e McGregor[6]: 1/(1+ €) approximation with constant
number of passes (strongly dependent on €)

e Feigenbaum et. al. [2]: 2/3 — € approximation with
O (/og%/e) passes.



Three Pass Algorithm on Arbitrary Stream Orders

e ldea:

e Compute a maximal matching Mg in one pass.

e Utilize the second and third passes to find 3-augmenting
paths.

e Existence of 3-augmenting paths?

e Lemma: When Greedy is close to 1/2 approximation,
there exists many 3-augmenting paths.[5]



Three Pass Algorithm on Arbitrary Stream Orders
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e First Pass:
Compute a maximal
matching Mg
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Three Pass Algorithm on Arbitrary Stream Orders

e Second Pass:
Compute a maximal
matching M,

between A(Mg) and
B(Mg)




Three Pass Algorithm on Arbitrary Stream Orders

e Third Pass:
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matching Mg
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and {a € A(Mg) :
Mg(a) € B(M,)
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Three Pass Algorithm on Arbitrary Stream Orders
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One-Pass Algorithm on Random Stream Orders

e Lemma: In expectation over all input edge sequences, if
matching computed by Greedy algorithm is close to a 1/2
approximation, then Greedy builds this matching early on,

in other words, converges quickly [5].
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o |dea:

Split the input stream into 3 phases.
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Second and Third Phases: Find 3-augmenting paths.

Also, compute greedy matching Mg in parallel.
e Maximum of Mg and augmented My (with My U Ma).



One-Pass Algorithm on Random Stream Orders

e Lemma: In expectation over all input edge sequences, if
matching computed by Greedy algorithm is close to a 1/2
approximation, then Greedy builds this matching early on,
in other words, converges quickly [5].

o |dea:

Split the input stream into 3 phases.

First Phase: Compute a greedy matching Mp.

Second and Third Phases: Find 3-augmenting paths.
e Also, compute greedy matching Mg in parallel.
e Maximum of Mg and augmented My (with My U Ma).

e 0.505 approximation, 0.503 approximation (General
Graphs)



Empirical Results

Table 1: Datasets Used (From SuiteSparse Matrix Collection)

Dataset Nodes Edges MBM

IMDB 1,324,748 3,782,463 250,516

NotreDameActors 520,223 1,470,404 114,762




Empirical Results

Table 1: Results Obtained (Average over 10 shuffles)

Opt. Gdy. &1P 2P(R) 2P(D) 3P

250,516 215,997.6 227,317 238,831.2 240,097.6

114,762 97,293.2 100,744.5 106,448.6 108,300.5




What is covered in our Survey?

e Focused on Maximum Cardinality Matching problem.
e Discussed bounds and hardness briefly.

e Surveyed algorithms dealing with multiple passes on
arbitrary stream orders.

e Also Surveyed algorithms dealing with random stream
orders (single and multiple passes).

e Have described the techniques presented in [6, 5, 1] in
detail
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e Survey techniques from results on more specific cases:
Planar graphs, low-arboricity graphs, etc.

e Survey results on Weighted Matching.
e Parameterized Perspective analysis.

e Dynamic Graph streams.

e Results from Online Matching.

e Techniques from algorithms from other Graph problems in
the streaming model (A general survey on Graph
Streaming Algorithms.)
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