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Introduction



Rise of Big Data

• In the last few decades, the world has witnessed

exponential growth in the number and size of real world

data.

• Analysing these massive data using classical algorithms is

a challenging task.

• Two approaches to analyze such massive data:

• Data Streaming

• Distributed Processing
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Graph Streaming

• Streaming algorithms sequentially scans the input data.

• Input data streams can be in random order or in

adversarial order.

• Specifically, in graph streaming the input stream is of

vertices or edges.

• Streaming algorithm uses O(poly log n) (polylogarithmic)

memory.
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Semi-Streaming Model

• Polylogarithmic memory is insufficient for many graph

problems [3].

• Even the basic bipartiteness or connectivity problems in

graphs requires Ω(n) space.

• Semi-Streaming Model: Allow O(npoly log n) (or Õ(n))

space [2, 8].

3



Maximum Matching



Maximum Matching Problem

Maximum Cardinality Matching

Given a graph G = (V ,E ), find a subset M ⊆ E of

maximum size such that no two adjacent edges are selected.

• Simply called the (Unweighted) Maximum Matching

Problem.

• Maximum Bipartite Matching: Maximum Matching

problem on Bipartite Graphs
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Known Results and Bounds

• Fastest Algorithm: O(m
√
n) [7]

• Semi-Streaming Model:

• Greedy Algorithm: 1/2 approximation

• Hardness: 1 − 1/e approximation [4]

• Better than 1/2? Open Problem
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Algorithms with Multiple Passes

or Random Stream Orders



Existing Semi-Streaming Algorithms

• Multiple passes of stream

• Random Stream Orders

• Standard Approach: Finding Augmenting Paths

• McGregor[6]: 1/(1 + ε) approximation with constant

number of passes (strongly dependent on ε)

• Feigenbaum et. al. [2]: 2/3 − ε approximation with

O
(
log 1

ε
/ε

)
passes.
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Three Pass Algorithm on Arbitrary Stream Orders

• Idea:

• Compute a maximal matching MG in one pass.

• Utilize the second and third passes to find 3-augmenting

paths.

• Existence of 3-augmenting paths?

• Lemma: When Greedy is close to 1/2 approximation,

there exists many 3-augmenting paths.[5]
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Three Pass Algorithm on Arbitrary Stream Orders

• First Pass:

Compute a maximal

matching MG
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Three Pass Algorithm on Arbitrary Stream Orders

• Second Pass:

Compute a maximal

matching ML

between A(MG ) and

B(MG )
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Three Pass Algorithm on Arbitrary Stream Orders

• Third Pass:

Compute a maximal

matching MR

between B(MG )

and {a ∈ A(MG ) :

MG (a) ∈ B(ML)}
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One-Pass Algorithm on Random Stream Orders

• Lemma: In expectation over all input edge sequences, if

matching computed by Greedy algorithm is close to a 1/2

approximation, then Greedy builds this matching early on,

in other words, converges quickly [5].

• Idea:

• Split the input stream into 3 phases.

• First Phase: Compute a greedy matching M0.

• Second and Third Phases: Find 3-augmenting paths.

• Also, compute greedy matching MG in parallel.

• Maximum of MG and augmented M0 (with M1 ∪M2).

• 0.505 approximation, 0.503 approximation (General

Graphs)
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Empirical Results

Table 1: Datasets Used (From SuiteSparse Matrix Collection)

Dataset Nodes Edges MBM

IMDB 1,324,748 3,782,463 250,516

NotreDameActors 520,223 1,470,404 114,762
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Empirical Results

Table 1: Results Obtained (Average over 10 shuffles)

Opt. Gdy. & 1 P 2 P(R) 2 P(D) 3 P

250,516 215,997.6 227,317 238,831.2 240,097.6

114,762 97,293.2 100,744.5 106,448.6 108,300.5
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What is covered in our Survey?

• Focused on Maximum Cardinality Matching problem.

• Discussed bounds and hardness briefly.

• Surveyed algorithms dealing with multiple passes on

arbitrary stream orders.

• Also Surveyed algorithms dealing with random stream

orders (single and multiple passes).

• Have described the techniques presented in [6, 5, 1] in

detail
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Future Work

• Survey techniques from results on more specific cases:

Planar graphs, low-arboricity graphs, etc.

• Survey results on Weighted Matching.

• Parameterized Perspective analysis.

• Dynamic Graph streams.

• Results from Online Matching.

• Techniques from algorithms from other Graph problems in

the streaming model (A general survey on Graph

Streaming Algorithms.)
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Servedio, editors, Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques,

14



References iv

pages 231–242, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg.

Andrew Mcgregor.

Finding graph matchings in data streams.

In APPROX-RANDOM, 2005.

Silvio Micali and Vijay Vazirani.

An o(sqrt(v)e) algorithm for finding maximum

matching in general graphs.

pages 17–27, 10 1980.

15



References v

S. Muthukrishnan.

Data streams: algorithms and applications.

Foundations and Trends in Theoretical Computer Science,

1, 2003.

16


	Introduction
	Maximum Matching
	Algorithms with Multiple Passes or Random Stream Orders

