Survey on Matching in the Graph-Stream Model

CS328 Project

Mrinal Anand (17110087) — Kishen Gowda (17110074) — Vraj Patel (17110174) **Advisor:** Anirban Dasgupta July 22, 2020

Indian Institute of Technology Gandhinagar

Introduction

- In the last few decades, the world has witnessed exponential growth in the number and size of real world data.
- Analysing these massive data using classical algorithms is a challenging task.
- Two approaches to analyze such massive data:
 - Data Streaming
 - Distributed Processing

Graph Streaming

- Streaming algorithms sequentially scans the input data.
- Input data streams can be in random order or in adversarial order.
- Specifically, in graph streaming the input stream is of vertices or edges.
- Streaming algorithm uses $O(poly \log n)$ (polylogarithmic) memory.

- Polylogarithmic memory is insufficient for many graph problems [3].
- Even the basic bipartiteness or connectivity problems in graphs requires Ω(n) space.
- Semi-Streaming Model: Allow O(npoly log n) (or Õ(n)) space [2, 8].

Maximum Matching

Maximum Cardinality Matching

Given a graph G = (V, E), find a subset $M \subseteq E$ of maximum size such that no two adjacent edges are selected.

- Simply called the (Unweighted) Maximum Matching Problem.
- Maximum Bipartite Matching: Maximum Matching problem on Bipartite Graphs

- Fastest Algorithm: $O(m\sqrt{n})$ [7]
- Semi-Streaming Model:
 - Greedy Algorithm: 1/2 approximation
 - Hardness: 1 1/e approximation [4]
 - Better than 1/2? Open Problem

Algorithms with Multiple Passes or Random Stream Orders

Existing Semi-Streaming Algorithms

- Multiple passes of stream
- Random Stream Orders

Existing Semi-Streaming Algorithms

- Multiple passes of stream
- Random Stream Orders
- Standard Approach: Finding Augmenting Paths
- McGregor[6]: $1/(1 + \epsilon)$ approximation with constant number of passes (strongly dependent on ϵ)
- Feigenbaum et. al. [2]: $2/3 \epsilon$ approximation with $O\left(\log \frac{1}{\epsilon}/\epsilon\right)$ passes.

- Idea:
 - Compute a maximal matching M_G in one pass.
 - Utilize the second and third passes to find 3-augmenting paths.
 - Existence of 3-augmenting paths?
- Lemma: When Greedy is close to 1/2 approximation, there exists many 3-augmenting paths.[5]

• First Pass: Compute a maximal matching *M*_G

• Second Pass: Compute a maximal matching M_L between $\overline{A(M_G)}$ and $B(M_G)$

• Third Pass:

• Third Pass:

One-Pass Algorithm on Random Stream Orders

• Lemma: In expectation over all input edge sequences, if matching computed by Greedy algorithm is close to a 1/2 approximation, then Greedy builds this matching early on, in other words, converges quickly [5].

One-Pass Algorithm on Random Stream Orders

• Lemma: In expectation over all input edge sequences, if matching computed by Greedy algorithm is close to a 1/2 approximation, then Greedy builds this matching early on, in other words, converges quickly [5].

• Idea:

- Split the input stream into 3 phases.
- First Phase: Compute a greedy matching M_0 .
- Second and Third Phases: Find 3-augmenting paths.
- Also, compute greedy matching M_G in parallel.
- Maximum of M_G and augmented M_0 (with $M_1 \cup M_2$).

One-Pass Algorithm on Random Stream Orders

• Lemma: In expectation over all input edge sequences, if matching computed by Greedy algorithm is close to a 1/2 approximation, then Greedy builds this matching early on, in other words, converges quickly [5].

• Idea:

- Split the input stream into 3 phases.
- First Phase: Compute a greedy matching M_0 .
- Second and Third Phases: Find 3-augmenting paths.
- Also, compute greedy matching M_G in parallel.
- Maximum of M_G and augmented M_0 (with $M_1 \cup M_2$).
- 0.505 approximation, 0.503 approximation (General Graphs)

Table 1: Datasets Used (From SuiteSparse Matrix Collection)

Dataset	Nodes	Edges	MBM
IMDB	1,324,748	3,782,463	250,516
NotreDameActors	520,223	1,470,404	114,762

Table 1: Results Obtained (Average over 10 shuffles)

Opt.	Gdy. & 1 P	2 P(R)	2 P(D)	3 P
250,516	215,997.6	227,317	238,831.2	240,097.6
114,762	97,293.2	100,744.5	106,448.6	108,300.5

- Focused on Maximum Cardinality Matching problem.
- Discussed bounds and hardness briefly.
- Surveyed algorithms dealing with multiple passes on arbitrary stream orders.
- Also Surveyed algorithms dealing with random stream orders (single and multiple passes).
- Have described the techniques presented in [6, 5, 1] in detail

Future Work

- Survey techniques from results on more specific cases: Planar graphs, low-arboricity graphs, etc.
- Survey results on Weighted Matching.
- Parameterized Perspective analysis.
- Dynamic Graph streams.
- Results from Online Matching.
- Techniques from algorithms from other Graph problems in the streaming model (A general survey on Graph Streaming Algorithms.)

Alireza Farhadi, MohammadTaghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.

Approximate maximum matching in random streams.

In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '20, page 1773–1785, USA, 2020. Society for Industrial and Applied Mathematics.

References ii

 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
 On graph problems in a semi-streaming model. Theoretical Computer Science, 348:207–216, 12 2005.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.

Graph distances in the data-stream model. *SIAM Journal on Computing*, 38(5):1709–1727, 2009.

References iii

🔋 Mikhail Kapralov.

Better bounds for matchings in the streaming model.

In SODA, 2013.

Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-streaming with few passes.

In Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio, editors, *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*,

References iv

pages 231–242, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

- Andrew Mcgregor.
 Finding graph matchings in data streams.
 In APPROX-RANDOM, 2005.
- Silvio Micali and Vijay Vazirani.
 An o(sqrt(v)e) algorithm for finding maximum matching in general graphs.
 pages 17–27, 10 1980.

S. Muthukrishnan. Data streams: algorithms and applications. Foundations and Trends in Theoretical Computer Science, 1, 2003.