Survey on Matching in the Graph-Stream Model

CS328 Project

Mrinal Anand (17110087) — Kishen Gowda (17110074) —
Vraj Patel (17110174)
Advisor: Anirban Dasgupta
July 22, 2020
Indian Institute of Technology Gandhinagar

Introduction

Rise of Big Data

- In the last few decades, the world has witnessed exponential growth in the number and size of real world data.
- Analysing these massive data using classical algorithms is a challenging task.
- Two approaches to analyze such massive data:
- Data Streaming
- Distributed Processing

Graph Streaming

- Streaming algorithms sequentially scans the input data.
- Input data streams can be in random order or in adversarial order.
- Specifically, in graph streaming the input stream is of vertices or edges.
- Streaming algorithm uses $\mathcal{O}($ poly $\log n)$ (polylogarithmic) memory.

Semi-Streaming Model

- Polylogarithmic memory is insufficient for many graph problems [3].
- Even the basic bipartiteness or connectivity problems in graphs requires $\Omega(n)$ space.
- Semi-Streaming Model: Allow $\mathcal{O}(n p o l y \log n)($ or $\tilde{\mathcal{O}}(n))$ space $[2,8]$.

Maximum Matching

Maximum Matching Problem

Maximum Cardinality Matching

Given a graph $G=(V, E)$, find a subset $M \subseteq E$ of maximum size such that no two adjacent edges are selected.

- Simply called the (Unweighted) Maximum Matching Problem.
- Maximum Bipartite Matching: Maximum Matching problem on Bipartite Graphs

Known Results and Bounds

- Fastest Algorithm: $\mathcal{O}(m \sqrt{n})$ [7]
- Semi-Streaming Model:
- Greedy Algorithm: $1 / 2$ approximation
- Hardness: $1-1 / e$ approximation [4]
- Better than $1 / 2$? Open Problem

Algorithms with Multiple Passes or Random Stream Orders

Existing Semi-Streaming Algorithms

- Multiple passes of stream
- Random Stream Orders

Existing Semi-Streaming Algorithms

- Multiple passes of stream
- Random Stream Orders
- Standard Approach: Finding Augmenting Paths
- McGregor[6]: $1 /(1+\epsilon)$ approximation with constant number of passes (strongly dependent on ϵ)
- Feigenbaum et. al. [2]: 2/3- ϵ approximation with $\mathcal{O}\left(\log \frac{1}{\epsilon} / \epsilon\right)$ passes.

Three Pass Algorithm on Arbitrary Stream Orders

- Idea:
- Compute a maximal matching M_{G} in one pass.
- Utilize the second and third passes to find 3-augmenting paths.
- Existence of 3 -augmenting paths?
- Lemma: When Greedy is close to $1 / 2$ approximation, there exists many 3 -augmenting paths.[5]

Three Pass Algorithm on Arbitrary Stream Orders

- First Pass:

Compute a maximal matching M_{G}

Three Pass Algorithm on Arbitrary Stream Orders

- Second Pass:

Compute a maximal matching M_{L} between $\overline{A\left(M_{G}\right)}$ and $B\left(M_{G}\right)$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

Three Pass Algorithm on Arbitrary Stream Orders

- Third Pass:

Compute a maximal matching M_{R} between $\overline{B\left(M_{G}\right)}$ and $\left\{a \in A\left(M_{G}\right)\right.$: $\left.M_{G}(a) \in B\left(M_{L}\right)\right\}$

One-Pass Algorithm on Random Stream Orders

- Lemma: In expectation over all input edge sequences, if matching computed by Greedy algorithm is close to a $1 / 2$ approximation, then Greedy builds this matching early on, in other words, converges quickly [5].

One-Pass Algorithm on Random Stream Orders

- Lemma: In expectation over all input edge sequences, if matching computed by Greedy algorithm is close to a $1 / 2$ approximation, then Greedy builds this matching early on, in other words, converges quickly [5].
- Idea:
- Split the input stream into 3 phases.
- First Phase: Compute a greedy matching M_{0}.
- Second and Third Phases: Find 3-augmenting paths.
- Also, compute greedy matching M_{G} in parallel.
- Maximum of M_{G} and augmented M_{0} (with $M_{1} \cup M_{2}$).

One-Pass Algorithm on Random Stream Orders

- Lemma: In expectation over all input edge sequences, if matching computed by Greedy algorithm is close to a $1 / 2$ approximation, then Greedy builds this matching early on, in other words, converges quickly [5].
- Idea:
- Split the input stream into 3 phases.
- First Phase: Compute a greedy matching M_{0}.
- Second and Third Phases: Find 3-augmenting paths.
- Also, compute greedy matching M_{G} in parallel.
- Maximum of M_{G} and augmented M_{0} (with $M_{1} \cup M_{2}$).
- 0.505 approximation, 0.503 approximation (General Graphs)

Empirical Results

Table 1: Datasets Used (From SuiteSparse Matrix Collection)

Dataset
 Nodes
 Edges
 MBM

$\begin{array}{llll}\text { IMDB } & 1,324,748 & 3,782,463 & 250,516\end{array}$
NotreDameActors $\quad 520,223 \quad 1,470,404 \quad 114,762$

Empirical Results

Table 1: Results Obtained (Average over 10 shuffles)
Opt. Gdy. \& 1 P
$250,516 \quad 215,997.6$
$227,317 \quad 238,831.2 \quad 240,097.6$
$\begin{array}{lllll}114,762 & 97,293.2 & 100,744.5 & 106,448.6 & 108,300.5\end{array}$

What is covered in our Survey?

- Focused on Maximum Cardinality Matching problem.
- Discussed bounds and hardness briefly.
- Surveyed algorithms dealing with multiple passes on arbitrary stream orders.
- Also Surveyed algorithms dealing with random stream orders (single and multiple passes).
- Have described the techniques presented in $[6,5,1]$ in detail

Future Work

- Survey techniques from results on more specific cases: Planar graphs, low-arboricity graphs, etc.
- Survey results on Weighted Matching.
- Parameterized Perspective analysis.
- Dynamic Graph streams.
- Results from Online Matching.
- Techniques from algorithms from other Graph problems in the streaming model (A general survey on Graph Streaming Algorithms.)

References

© Alireza Farhadi, MohammadTaghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams.
In Proceedings of the Thirty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA '20, page 1773-1785, USA, 2020. Society for Industrial and Applied Mathematics.

References if

䍰 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theoretical Computer Science, 348:207-216, 122005.
目 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM Journal on Computing, 38(5):1709-1727, 2009.

References ifi

Mikhail Kapralov.
Better bounds for matchings in the streaming model.
In SODA, 2013.
國 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-streaming with few passes.
In Anupam Gupta, Klaus Jansen, José Rolim, and Rocco Servedio, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,

References iv

pages 231-242, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

目 Andrew Mcgregor.
Finding graph matchings in data streams.
In APPROX-RANDOM, 2005.
國 Silvio Micali and Vijay Vazirani.
An o(sqrt(v)e) algorithm for finding maximum matching in general graphs.
pages 17-27, 101980.

References

S. Muthukrishnan.

Data streams: algorithms and applications.
Foundations and Trends in Theoretical Computer Science, 1, 2003.

