A Parameterized Perspective on Attacking and Defending Elections

IWOCA, 2020

Kishen Gowda — Neeldhara Misra — Vraj Patel
June 9, 2020
Indian Institute of Technology, Gandhinagar

Background

Introduction

- Based on the paper "Protecting Elections by Recounting Ballots" (Elkind et. al., IJCAI '19)[2]
- Vote Manipulation Problem
- Has two stages:
- Attacker: Tries to manipulate the election
- Defender: Recounts the ballots to protect election

The Problem

- Set of k districts
- Set of m candidates (C)
- n voters spread across different districts
- $v_{i j}$ representing number of votes of $\mathrm{j}^{\text {th }}$ candidate in the i^{th} district

The Problem

- PV: Plurality over Voters
- $S W(a)=\sum_{i \in[k]} v_{i a}$

The Problem

- PV: Plurality over Voters
- $\operatorname{SW}(a)=\sum_{i \in[k]} v_{i a}$
- PD: Plurality over Districts
- $i^{\text {th }}$ district is assigned a weight w_{i}
- Plurality winner in that district is given a "score" of w_{i}
- $\operatorname{SW}(a)=\sum_{i \in[k]} w_{i} \cdot\left[a=\arg \max \left(v_{i}\right)\right]$

The Problem

- PV: Plurality over Voters
- $\operatorname{SW}(a)=\sum_{i \in[k]} v_{i a}$
- PD: Plurality over Districts
- $i^{\text {th }}$ district is assigned a weight w_{i}
- Plurality winner in that district is given a "score" of w_{i}
- $\operatorname{SW}(a)=\sum_{i \in[k]} w_{i} \cdot\left[a=\arg \max \left(v_{i}\right)\right]$
- Order for tie-breaking: \succ is a linear order over C.
- $a \succ b$ means a is favoured over b

The Attacker

- A preferred candidate w
- Budget of $B_{\mathcal{A}}$
- γ_{i} : how many votes can be manipulated in the $i^{\text {th }}$ district

The Attacker

- A preferred candidate w
- Budget of $B_{\mathcal{A}}$
- γ_{i} : how many votes can be manipulated in the $i^{\text {th }}$ district
- Manipulation Problem (Man): Is there a successful manipulation strategy Z where Z is a subset of the districts and $|\mathcal{Z}| \leqslant B_{\mathcal{A}}$, s.t. a preferred candidate a is the winner?
- Manipulated setting: $v_{i j}$ to $\bar{v}_{i j}$

The Defender

- Orders recounts in some districts
- Budget of B_{D}
- Recounting Problem (Rec): Is there a successful recounting strategy \mathcal{R} where \mathcal{R} is a subset of the districts and $|\mathcal{R}| \leqslant B_{\mathcal{D}}$, s.t. a preferred candidate b is the winner?

The Defender

- Orders recounts in some districts
- Budget of B_{D}
- Recounting Problem (Rec): Is there a successful recounting strategy \mathcal{R} where \mathcal{R} is a subset of the districts and $|\mathcal{R}| \leqslant B_{\mathcal{D}}$, s.t. a preferred candidate b is the winner?
- Tries to make a better candidate win
- Better: had more social welfare
- Knows about both $v_{i j}$ and $\bar{v}_{i j}$

Example

Example

Example

Existing Hardness Results

	Plurality over Voters (PV)	Plurality over Districts (PD)	
		Unweighted	Weighted
REC	NP-c, Thm. 3.1 (i) (3)	P, Thm. 4.3	NP-c, Thm. 4.1 (i) (3)
	NP-c, Thm. 3.1 (ii) (1)		NP-c, Thm. 4.1 (ii) (1)
	$O\left(n^{m+2}\right)$, Thm. 3.2		$O\left(n^{m+2}\right)$, Thm. 4.2
MAN	NP-h, Thm. 3.3 (i) (3) (0) @	NP-c, Thm. 4.8 (U)	Σ_{2}^{P}-c, Thm. 4.6 (3)
	NP-h, Thm. 3.3 (ii) (1) (1) @		NP-h, Thm. 4.7 (1) (0)

Figure 1: Summary of Existing Complexity Results [2]

Parameterized Complexity

Parameterized Terminology

Definition [1]

A parameterized problem is a language $L \subseteq \Sigma^{*} \times \mathbb{N}$, where Σ is a finite alphabet. The second component is called the parameter of the problem.

- FPT running time: $f(k) \cdot|x|^{0(1)}$
- FPT: Fixed-Parameter Tractable

W-Hardness

Definition

The W hierarchy is a collection of computational complexity classes defined for parameterized problems. $W[i] \subseteq W[j]$ for all $i \leqslant j$.

- $W[0], W[1], \ldots$ correspond to increasing difficulty of problems.
- $W[0]=F P T$

Our Work

FPT Parameters

PV-REC

- FPT when parameterized with parameters:
- No. of districts (k)
- No. of voters (n)
- Follows from a simple brute force algorithm

FPT Parameters

PV-Man

- FPT when parameterized with no. of voters n.
- For each possible set of districts that can be chosen $\left(2^{k}\right)$
- For each district in the chosen set $\left(\leqslant B_{\mathcal{A}}\right)$
- Consider all possible ways votes can be manipulated $\left(m^{n}\right)$

FPT Parameters

PV-MAN

- FPT when parameterized with no. of voters n.
- For each possible set of districts that can be chosen $\left(2^{k}\right)$
- For each district in the chosen set $\left(\leqslant B_{\mathcal{A}}\right)$
- Consider all possible ways votes can be manipulated (m^{n})
- Run FPT algorithm for PV-REC parameterized by n
- $k \leqslant n, B_{\mathcal{A}} \leqslant n$ and $m \leqslant 2 n$

Why $m \leqslant 2 n ?$

- In practical scenarios, $m \leqslant n$
- A theoretical bound also exists

Why $m \leqslant 2 n ?$

- In practical scenarios, $m \leqslant n$
- A theoretical bound also exists
- At most n candidates can hold any votes
- After manipulation n others can
- $2 n$ candidates are "interesting"

PV-Rec with parameter $B_{\mathcal{D}}$

Lemma

PV-Rec is W[2]-hard parameterized by budget of the defender $\left(B_{\mathcal{D}}\right)$.

Proof: Follows from a reduction from the Dominating Set Problem.

Dominating Set Problem

Dominating Set Problem

Given a graph $G=(V, E)$ and an integer $k \leqslant n$, is there a set $D \subseteq V$ such that D is a dominating set of G, i.e., $|D| \leqslant k$ and $V=N[D]$?

Dominating Set Example

Dominating Set Example

Reduction: Dominating Set to PV-Rec

Fact: Dominating Set Problem is W[2]-Hard [1].

Reduction: Dominating Set to PV-Rec

Fact: Dominating Set Problem is W[2]-Hard [1].

Given an instance ($G=(V, E), k$) of Dominating Set, construct an instance of PV-REc as follows:

Districts:

- A special district \mathcal{D}_{0}
- A district \mathcal{D}_{v} corresponding to each vertex $v \in V$

Reduction: Dominating Set to PV-Rec

Candidates:

- A candidate \mathcal{C}_{v} for each vertex $v \in V$
- A special candidate w
- Dummy candidates $d_{v j}$ for all $v \in V$ where $j \in N_{G}[v]$.

Reduction: Dominating Set to PV-Rec

Candidates:

- A candidate \mathcal{C}_{v} for each vertex $v \in V$
- A special candidate w
- Dummy candidates $d_{v j}$ for all $v \in V$ where $j \in N_{G}[v]$.

Budget ($B_{\mathcal{D}}$): k
Preferred Candidate: w
Tie Breaking Order: $\ldots \mathcal{C}_{v} \ldots \succ w \succ \ldots d_{v j} \ldots$

Reduction: Dominating Set to PV-Rec

Voting Profile: After Manipulation

District	w	\ldots	\mathcal{C}_{u}	\ldots	$d_{v j}$
\mathcal{D}_{0}	$\|V\|$	\ldots	$\|V\|-(\delta(u)+1)$	\ldots	0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
\mathcal{D}_{v}	0	\ldots	1 if $u \in N[v]$ else 0	\ldots	0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Reduction: Dominating Set to PV-Rec

Voting Profile: Before Manipulation

District	w	\ldots	\mathcal{C}_{u}	\ldots	$d_{v j}$
\mathcal{D}_{0}	$\|V\|$	\ldots	$\|V\|-(\delta(u)+1)$	\ldots	0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
\mathcal{D}_{v}	0	\ldots	0	\ldots	1 if $j \in N[v]$ else 0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Example: Dominating Set to PV-Rec

District	w	\mathcal{C}_{a}	\mathcal{C}_{b}	\mathcal{C}_{c}	\mathcal{C}_{d}	\mathcal{C}_{e}
\mathcal{D}_{0}	5	2	1	1	2	2
\mathcal{D}_{a}	0	1	1	1	0	0
\mathcal{D}_{b}	0	1	1	1	0	1
\mathcal{D}_{c}	0	1	1	1	1	0
\mathcal{D}_{d}	0	0	0	1	1	1
\mathcal{D}_{e}	0	0	1	0	1	1
Total	5	5	5	5	5	5

Example: Dominating Set to PV-Rec

District	w	\mathcal{C}_{a}	\mathcal{C}_{b}	\mathcal{C}_{c}	\mathcal{C}_{d}	\mathcal{C}_{e}
\mathcal{D}_{0}	5	2	1	1	2	2
\mathcal{D}_{a}	0	1	1	1	0	0
\mathcal{D}_{b}	0	0	0	0	0	0
\mathcal{D}_{c}	0	1	1	1	1	0
\mathcal{D}_{d}	0	0	0	1	1	1
\mathcal{D}_{e}	0	0	1	0	1	1
Total	5	4	4	4	5	4

Example: Dominating Set to PV-Rec

District	w	\mathfrak{C}_{a}	\mathfrak{C}_{b}	\mathfrak{C}_{c}	\mathfrak{C}_{d}	\mathfrak{C}_{e}
\mathcal{D}_{0}	5	2	1	1	2	2
\mathcal{D}_{a}	0	1	1	1	0	0
\mathcal{D}_{b}	0	1	1	1	0	1
\mathcal{D}_{c}	0	1	1	1	1	0
\mathcal{D}_{d}	0	0	0	0	0	0
\mathcal{D}_{e}	0	0	1	0	1	1
Total	5	5	5	4	4	4

Example: Dominating Set to PV-Rec

District	w	\mathcal{C}_{a}	\mathcal{C}_{b}	\mathcal{C}_{c}	\mathcal{C}_{d}	\mathcal{C}_{e}
\mathcal{D}_{0}	5	2	1	1	2	2
\mathcal{D}_{a}	0	1	1	1	0	0
\mathcal{D}_{b}	0	0	0	0	0	0
\mathcal{D}_{c}	0	1	1	1	1	0
\mathcal{D}_{d}	0	0	0	0	0	0
\mathcal{D}_{e}	0	0	1	0	1	1
Total	5	4	4	3	4	3

Proof of Reduction

Forward Direction:

- Dominating set D of size at most k
- Select the districts \mathcal{D}_{v} for all $v \in D$
- For each $v \in D$, votes of C_{j} for all $j \in N_{G}[v]$ drop by 1
- All vertex candidates lose at least one vote
- Dummy candidates cannot get more than one vote
- w has most votes and wins

Proof of Reduction

Reverse Direction:

- Defender has strategy \mathcal{R} s.t $|\mathcal{R}| \leqslant B_{\mathcal{D}}$
- No use of recounting \mathcal{D}_{0}
- All \mathcal{C}_{v} candidates must lose at least 1 vote.

Proof of Reduction

Reverse Direction:

- Defender has strategy \mathcal{R} s.t $|\mathcal{R}| \leqslant B_{\mathcal{D}}$
- No use of recounting \mathcal{D}_{0}
- All \mathcal{C}_{v} candidates must lose at least 1 vote.
- Suppose, if \mathcal{R} is not a dominating set $\Longrightarrow \exists$ at least one vertex u which is not covered by \mathcal{R}.
- None of the neighbours of $u \in \mathcal{R}$
- Vote count of \mathcal{C}_{u} remains same. Contradiction!

PV-Man with parameter $B_{\mathcal{A}}$

Lemma

PV-MAN is W[1]-hard parameterized by budget of the attacker $\left(B_{\mathcal{A}}\right)$.

Proof: Follows from a reduction from the Multicolored Clique Problem.

Multicolored Clique Problem

Multicolored Clique Problem

Given a graph G and a partition of the vertex set
$V=V_{1} \uplus V_{2} \uplus \ldots \uplus V_{k}$ into k color classes, is there a set
$S \subseteq V$ such that it is a multicolored clique of G, i.e., $|S|=k$ and $\left|S \cap V_{i}\right|=1$ for each $i \in[k]$?

Multicolored Clique Example

Multicolored Clique Example

Reduction: Multicolored Clique to PV-Man

Fact: Multicolored Clique is W[1]-Hard [3, 4].

Reduction: Multicolored Clique to PV-Man

Fact: Multicolored Clique is W[1]-Hard [3, 4].

Given an instance ($\left.G=\left(V=V_{1} \uplus \ldots \uplus V_{k}, E\right), k\right)$ of Multicolored Clique, construct an instance of PV-Man as follows:

Districts:

- A baseline district \mathcal{D}_{0}
- A primary district \mathcal{D}_{v} corresponding to each vertex $v \in V$
- Two secondary districts $\mathcal{D}_{u v}$ and $\mathcal{D}_{v u}$ corresponding to each edge $e=(u, v) \in E$.

Reduction: Multicolored Clique to PV-Man

Candidates:

- Main candidates: c_{v} for each vertex $v \in V$
- Challenger candidates: \mathcal{R}_{i} for each color class $i \in[k]$
- Challenger candidates: $\mathcal{R}_{i j}$ and $\mathcal{R}_{j i}$ for each pair of color classes $1 \leqslant i<j \leqslant k$
- A special candidate w
- Dummy candidates: used to equalize number of votes across primary and secondary districts.

Reduction: Multicolored Clique to PV-Man

Candidates:

- Main candidates: c_{v} for each vertex $v \in V$
- Challenger candidates: \mathcal{R}_{i} for each color class $i \in[k]$
- Challenger candidates: $\mathcal{R}_{i j}$ and $\mathcal{R}_{j i}$ for each pair of color classes $1 \leqslant i<j \leqslant k$
- A special candidate w
- Dummy candidates: used to equalize number of votes across primary and secondary districts.

Budgets: $B_{\mathcal{A}}=k^{2}, B_{\mathcal{D}}=0$
Preferred Candidate: w
Tie Breaking Order:
$\ldots \mathcal{R}_{i} \ldots \succ \ldots \mathcal{R}_{i j} \ldots \succ \ldots c_{v} \ldots \succ w \succ \ldots$ dummies \ldots

Reduction: Multicolored Clique to PV-Man

Voting Profile:

District	w	\mathcal{R}_{i}	$\mathcal{R}_{i j}$	c_{x}
\vdots	\vdots	\vdots	\vdots	\vdots
\mathcal{D}_{v}	0	1 if $v \in V_{i}$ else 0	0	$k-1$ if $v=x$ else 0
\vdots	\vdots	\vdots	\vdots	\vdots
$\mathcal{D}_{u v}$	0	0	1 if $u \in V_{i} \&$ $v \in V_{j}$, else 0	1 if $u, x \in V_{i^{\prime}}$ $\& u \neq x$, else 0
\vdots	\vdots	\vdots	\vdots	\vdots

Reduction: Multicolored Clique to PV-Man

Voting Profile:

- Let ℓ be a large constant.
- For district D with v voters, add $\ell-v$ dummy candidates, and a distinct dummy voter to each.
- Let $F=\ell k^{2}$.

Reduction: Multicolored Clique to PV-Man

Voting Profile:

- Let ℓ be a large constant.
- For district D with v voters, add $\ell-v$ dummy candidates, and a distinct dummy voter to each.
- Let $F=\ell k^{2}$.
- District \mathcal{D}_{0} : Designed such that all main candidates $\left(c_{v}\right)$ get overall $F+k-2$ votes and the challenger candidates ($\mathcal{R}_{i}^{\prime} s$ and $\mathcal{R}_{i j}^{\prime} s$) get overall F votes.
- w gets 0 votes overall.
- $\gamma_{\mathcal{D}_{0}}=0, \gamma_{D}=\ell$ for all other districts D.

Reduction: Multicolored Clique to PV-Man

Attack Plan:

- Our strategy will be to transfer all (i.e. ℓ) votes in selected districts to w.
- Final score of w will be $\ell k^{2}=F$.
- All the candidates \mathcal{R}_{i} 's, $\mathcal{R}_{i j}$'s and c_{v} 's are above w
- Need them to lose at least 1,1 and $k-1$ votes respectively.

Example: Multicolored Clique to PV-Man

- $k=3, \ell=3, F=27$
- $\mathcal{R}_{i}=27, \mathcal{R}_{i j}=27, c_{v}=28$

Example: Multicolored Clique to PV-Man

- $\mathcal{R}_{R}, \mathcal{R}_{G}, \mathcal{R}_{B}$ decreases by 1
- $c_{r_{1}}, c_{g_{2}}, c_{b_{1}}$ decreases by 2

Example: Multicolored Clique to PV-Man

- $\mathcal{R}_{R G}$ and $\mathcal{R}_{G R}$ decreases by 1
- $\mathcal{R}_{R B}, \mathcal{R}_{B R}, \mathcal{R}_{G B}$ and $\mathcal{R}_{B G}$ also decrease by 1

Example: Multicolored Clique to PV-Man

- $\mathcal{R}_{R G}$ and $\mathcal{R}_{G R}$ decreases by 1
- $\mathcal{R}_{R B}, \mathcal{R}_{B R}, \mathcal{R}_{G B}$ and $\mathcal{R}_{B G}$ also decrease by 1

Example: Multicolored Clique to PV-Man

- $c_{r_{2}}$ loses 2 votes.
- $c_{g_{1}}$ also loses 2 votes.

Example: Multicolored Clique to PV-Man

- $c_{r_{2}}$ loses 2 votes.
- $c_{g_{1}}$ also loses 2 votes.

Proof of Reduction

Forward Direction:

- Multi-colored clique S of size k.
- Select the k primary districts and $2\binom{k}{2}$ secondary districts corresponding to vertices and edges of S.
- Transfer all ℓ votes in each district to w.
- All challenger candidates lose 1 vote each.
- Dummy candidates may have 0 or 1 vote.

Proof of Reduction

Forward Direction:

- Main candidates corresponding to S lose $k-1$ votes from their corresponding primary district.
- Let $S \cap V_{i}=\left\{v_{i}\right\}$. For any other $u \in V_{i}, c_{u}$ loses 1 vote each from the districts corresponding to the $k-1$ edges of v_{i} in S. Thus, c_{u} loses $k-1$ votes too.
- w has $\ell k^{2}=F$ votes while everyone else has $\leqslant F-1$ votes. Hence, w wins.

Proof of Reduction

Reverse Direction:

- Attacker has strategy Z s.t $|\mathcal{Z}| \leqslant B_{\mathcal{A}}=k^{2}$.
- Observe that max score possible for w is $\ell k^{2}=F$
- \mathcal{R}_{i}^{\prime} s must lose at least 1 vote, as they have F votes and are above w in order.
- There must be at least one primary district corresponding to a vertex from V_{i}, for all $i \in[k]$.
- Attacker is forced to manipulate in $k(k-1)$ secondary districts to drop the votes of candidates $\mathcal{R}_{i j}^{\prime} s$ by 1 .
- This completes the budget: k primary districts and $k(k-1)$ secondary districts.

Proof of Reduction

Reverse Direction:

- Claim: The selected districts must correspond to a multicolored clique in G.
- Let $\left\{v_{1}, \ldots v_{k}\right\}$ be the vertices whose corresponding primary district is attacked, $v_{i} \in V_{i}$.
- Suppose $\left(v_{i}, v_{j}\right) \notin E(G)$. Challenger candidates $\mathcal{R}_{i j}$ and $\mathcal{R}_{j i}$ force attack in secondary districts corresponding to edge with endpoints in V_{i} and V_{j}.
- Suppose $\mathcal{D}_{x y}$ was attacked, with $x \in V_{i}$ and $y \in V_{j}$ to reduce the votes of $\mathcal{R}_{i j}$.

Proof of Reduction

Reverse Direction:

- Suppose, wlog, $x \neq v_{i}$.
- It is required that c_{x} loses at least $k-1$ votes. But, c_{x} doesn't lose votes in primary districts, and it loses votes in atmost $k-2$ secondary districts, as it loses no votes in $\mathcal{D}_{x y}$.
- Score of c_{x} decreases by at most $k-2$.
- c_{x} has a clear chance of winning over w. Definitely, w doesn't win. Contradiction!

Other Results

- All FPT results for PV-REC and PV-Man carry over to PD-REC and PD-MAN respectively.
- PD-REC is W[1]-hard with defender budget as parameter. (Reduction from Multi-Colored Clique)
- PD-MaN is W[1]-hard with attacker budget as parameter. (Reduction from PD-REC)

Future Work

- PV/PD-MAN parameterized by no. of districts.
- Identifying and working with structural parameters.
- Working with structured profiles like single-peakedness.

Questions?

References

目 Downey, R. G., and Fellows, M. R.
Parameterized Complexity.
Springer, 1999.
嗇 Elkind, E., Gan, J., Obraztsova, S., Rabinovich, Z., and Voudouris, A. A. Protecting elections by recounting ballots.
In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence (IJCAI) (2019),
pp. 259-265.

References if

囯 Fellows, M. R., Hermelin, D., Rosamond, F. A., and Vialette, S.

On the parameterized complexity of multiple-interval graph problems.
Theor. Comput. Sci 410, 1 (2009), 53-61.
圊 Pietrzak, K.
On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems.
J. Comput. Syst. Sci 67, 4 (2003), 757-771.

