A Parameterized Perspective on Attacking and Defending Elections IWOCA. 2020

Kishen Gowda — Neeldhara Misra — Vraj Patel June 9, 2020

Indian Institute of Technology, Gandhinagar

Background

- Based on the paper "Protecting Elections by Recounting Ballots" (Elkind et. al., IJCAI '19)[2]
- Vote Manipulation Problem
- Has two stages:
 - Attacker: Tries to manipulate the election
 - Defender: Recounts the ballots to protect election

- Set of *k* districts
- Set of *m* candidates (*C*)
- *n* voters spread across different districts
- v_{ij} representing number of votes of jth candidate in the ith district

The Problem

• PV: Plurality over Voters

•
$$SW(a) = \sum_{i \in [k]} v_{ia}$$

The Problem

• PV: Plurality over Voters

•
$$SW(a) = \sum_{i \in [k]} v_{ia}$$

- PD: Plurality over Districts
- ith district is assigned a weight w_i
- Plurality winner in that district is given a "score" of w_i

•
$$SW(a) = \sum_{i \in [k]} w_i \cdot [a = \arg \max(v_i)]$$

The Problem

• PV: Plurality over Voters

•
$$SW(a) = \sum_{i \in [k]} v_{ia}$$

- PD: Plurality over Districts
- ith district is assigned a weight w_i
- Plurality winner in that district is given a "score" of w_i

•
$$SW(a) = \sum_{i \in [k]} w_i \cdot [a = \arg \max(v_i)]$$

- Order for tie-breaking: \succ is a linear order over C.
- $a \succ b$ means a is favoured over b

- A preferred candidate w
- Budget of $B_{\mathcal{A}}$
- γ_i : how many votes can be manipulated in the i^{th} district

- A preferred candidate w
- Budget of B_A
- γ_i : how many votes can be manipulated in the i^{th} district
- Manipulation Problem (Man): Is there a successful manipulation strategy Z where Z is a subset of the districts and |Z| ≤ B_A, s.t. a preferred candidate a is the winner?
- Manipulated setting: v_{ij} to \overline{v}_{ij}

The Defender

- Orders recounts in some districts
- Budget of $B_{\mathcal{D}}$
- Recounting Problem (Rec): Is there a successful recounting strategy R where R is a subset of the districts and |R| ≤ B_D, s.t. a preferred candidate b is the winner?

The Defender

- Orders recounts in some districts
- Budget of $B_{\mathcal{D}}$
- Recounting Problem (Rec): Is there a successful recounting strategy R where R is a subset of the districts and |R| ≤ B_D, s.t. a preferred candidate b is the winner?
- Tries to make a better candidate win
- Better: had more social welfare
- Knows about both v_{ij} and \overline{v}_{ij}

Example

Example

Example

	Plurality over Voters (PV)	Plurality over Districts (PD)		
		Unweighted	Weighted	
Rec	NP-c, Thm. 3.1 (i) (3) NP-c, Thm. 3.1 (ii) (10) $O(n^{m+2})$, Thm. 3.2	P, Thm. 4.3	NP-c, Thm. 4.1 (i) (3) NP-c, Thm. 4.1 (ii) (10) $O(n^{m+2})$, Thm. 4.2	
MAN	NP-h, Thm. 3.3 (i) ③ ◎ ∞ NP-h, Thm. 3.3 (ii) ① ◎ ∞	NP-c, Thm. 4.8 🕕	Σ_2^P -c, Thm. 4.6 (3) NP-h, Thm. 4.7 (1) (0)	

Figure 1: Summary of Existing Complexity Results [2]

Parameterized Complexity

Definition [1]

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a finite alphabet. The second component is called the parameter of the problem.

- FPT running time: $f(k) \cdot |x|^{O(1)}$
- FPT: Fixed-Parameter Tractable

Definition

The W hierarchy is a collection of computational complexity classes defined for parameterized problems. $W[i] \subseteq W[j]$ for all $i \leq j$.

- *W*[0], *W*[1], ... correspond to increasing difficulty of problems.
- W[0] = FPT

Our Work

FPT Parameters

PV-Rec

- FPT when parameterized with parameters:
 - No. of districts (k)
 - No. of voters (n)
- Follows from a simple brute force algorithm

FPT Parameters

PV-Man

- FPT when parameterized with no. of voters n.
- For each possible set of districts that can be chosen (2^k)
- For each district in the chosen set ($\leq B_A$)
- Consider all possible ways votes can be manipulated (mⁿ)

PV-Man

- FPT when parameterized with no. of voters n.
- For each possible set of districts that can be chosen (2^k)
- For each district in the chosen set ($\leqslant B_A$)
- Consider all possible ways votes can be manipulated (mⁿ)
- Run FPT algorithm for PV-REC parameterized by n
- $k \leqslant n$, $B_A \leqslant n$ and $m \leqslant 2n$

- In practical scenarios, $m \leq n$
- A theoretical bound also exists

- In practical scenarios, $m \leqslant n$
- A theoretical bound also exists
- At most *n* candidates can hold any votes
- After manipulation *n* others can
- 2*n* candidates are "interesting"

Lemma

PV-REC is W[2]-hard parameterized by budget of the defender $(B_{\mathcal{D}})$.

Proof: Follows from a reduction from the DOMINATING SET PROBLEM.

Dominating Set Problem

Given a graph G = (V, E) and an integer $k \leq n$, is there a set $D \subseteq V$ such that D is a dominating set of G, i.e., $|D| \leq k$ and V = N[D]?

Dominating Set Example

Dominating Set Example

Reduction: Dominating Set to PV-Rec

Fact: DOMINATING SET PROBLEM is W[2]-Hard [1].

Fact: Dominating Set Problem is W[2]-Hard [1].

Given an instance (G = (V, E), k) of DOMINATING SET, construct an instance of PV-REC as follows:

Districts:

- A special district \mathcal{D}_0
- A district \mathfrak{D}_v corresponding to each vertex $v \in V$

Candidates:

- A candidate \mathfrak{C}_{v} for each vertex $v \in V$
- A special candidate w
- Dummy candidates d_{vj} for all $v \in V$ where $j \in N_G[v]$.

Candidates:

- A candidate \mathcal{C}_v for each vertex $v \in V$
- A special candidate w
- Dummy candidates d_{vj} for all $v \in V$ where $j \in N_G[v]$.

Budget $(B_{\mathcal{D}})$: k Preferred Candidate: w Tie Breaking Order: ... $\mathcal{C}_{v} \dots \succ w \succ \dots d_{vj} \dots$

Voting Profile: After Manipulation

District	w		Cu		d_{vj}
\mathcal{D}_{0}	V		$ V - (\delta(u) + 1)$		0
:	:	:		÷	:
Д	0		1 if $u \in N[v]$		0
\mathcal{D}_{v}			else 0		0
÷	:	:	÷	÷	:

Voting Profile: Before Manipulation

District	w		\mathcal{C}_u		d_{vj}
\mathcal{D}_{0}	V		$ V - (\delta(u) + 1)$		0
:	:	÷		:	•
Л	0		0		1 if $j \in N[v]$
\mathcal{D}_{v}	0		0		else 0
÷	:	:	÷	÷	

District	W	Ca	\mathcal{C}_{b}	\mathcal{C}_{c}	\mathcal{C}_d	\mathcal{C}_e
\mathcal{D}_{0}	5	2	1	1	2	2
\mathcal{D}_{a}	0	1	1	1	0	0
\mathcal{D}_{b}	0	1	1	1	0	1
\mathbb{D}_{c}	0	1	1	1	1	0
\mathbb{D}_d	0	0	0	1	1	1
\mathcal{D}_{e}	0	0	1	0	1	1
Total	5	5	5	5	5	5

District	W	Ca	\mathcal{C}_{b}	\mathcal{C}_{c}	\mathcal{C}_d	\mathcal{C}_{e}
\mathcal{D}_{0}	5	2	1	1	2	2
\mathcal{D}_{a}	0	1	1	1	0	0
\mathcal{D}_{b}	0	0	0	0	0	0
\mathcal{D}_{c}	0	1	1	1	1	0
\mathbb{D}_d	0	0	0	1	1	1
\mathcal{D}_{e}	0	0	1	0	1	1
Total	5	4	4	4	5	4

District	W	Ca	\mathcal{C}_{b}	\mathcal{C}_{c}	\mathcal{C}_d	\mathcal{C}_e
\mathcal{D}_{0}	5	2	1	1	2	2
\mathcal{D}_{a}	0	1	1	1	0	0
\mathcal{D}_{b}	0	1	1	1	0	1
\mathcal{D}_{c}	0	1	1	1	1	0
\mathcal{D}_d	0	0	0	0	0	0
\mathcal{D}_{e}	0	0	1	0	1	1
Total	5	5	5	4	4	4

Forward Direction:

- Dominating set D of size at most k
- Select the districts \mathfrak{D}_{v} for all $v \in D$
- For each $v \in D$, votes of C_j for all $j \in N_G[v]$ drop by 1
- All vertex candidates lose at least one vote
- Dummy candidates cannot get more than one vote
- w has most votes and wins

- Defender has strategy \mathfrak{R} s.t $|\mathfrak{R}| \leqslant B_{\mathfrak{D}}$
- $\bullet\,$ No use of recounting ${\mathcal D}_0$
- All \mathcal{C}_v candidates must lose at least 1 vote.

- Defender has strategy $\mathcal R$ s.t $|\mathcal R|\leqslant B_{\mathcal D}$
- No use of recounting \mathcal{D}_0
- All \mathcal{C}_{v} candidates must lose at least 1 vote.
- Suppose, if R is not a dominating set ⇒ ∃ at least one vertex u which is not covered by R.
- None of the neighbours of $u \in \mathcal{R}$
- Vote count of \mathcal{C}_u remains same. **Contradiction!**

Lemma

 $\mathrm{PV}\text{-}\mathrm{MAN}$ is W[1]-hard parameterized by budget of the attacker ($B_{\mathcal{A}}$).

Proof: Follows from a reduction from the MULTICOLORED CLIQUE PROBLEM.

Multicolored Clique Problem

Given a graph G and a partition of the vertex set $V = V_1 \uplus V_2 \uplus \ldots \uplus V_k$ into k color classes, is there a set $S \subseteq V$ such that it is a multicolored clique of G, i.e., |S| = kand $|S \cap V_i| = 1$ for each $i \in [k]$?

Multicolored Clique Example

Multicolored Clique Example

Fact: MULTICOLORED CLIQUE is W[1]-Hard [3, 4].

Fact: MULTICOLORED CLIQUE is W[1]-Hard [3, 4].

Given an instance $(G = (V = V_1 \uplus ... \uplus V_k, E), k)$ of MULTICOLORED CLIQUE, construct an instance of PV-MAN as follows:

Districts:

- A baseline district \mathcal{D}_0
- A primary district \mathcal{D}_{v} corresponding to each vertex $v \in V$
- Two secondary districts D_{uv} and D_{vu} corresponding to each edge e = (u, v) ∈ E.

Candidates:

- Main candidates: c_v for each vertex $v \in V$
- Challenger candidates: \Re_i for each color class $i \in [k]$
- Challenger candidates: \mathcal{R}_{ij} and \mathcal{R}_{ji} for each pair of color classes $1 \leq i < j \leq k$
- A special candidate w
- *Dummy* candidates: used to equalize number of votes across *primary* and *secondary* districts.

Candidates:

- Main candidates: c_v for each vertex $v \in V$
- Challenger candidates: \Re_i for each color class $i \in [k]$
- Challenger candidates: \mathcal{R}_{ij} and \mathcal{R}_{ji} for each pair of color classes $1 \leq i < j \leq k$
- A special candidate w
- *Dummy* candidates: used to equalize number of votes across *primary* and *secondary* districts.

Budgets: $B_A = k^2$, $B_D = 0$

Preferred Candidate: w

Tie Breaking Order:

 $\ldots \mathcal{R}_i \ldots \succ \ldots \mathcal{R}_{ij} \ldots \succ \ldots \succ c_v \ldots \succ w \succ \ldots$ dummies \ldots

Voting Profile:

District	W	\mathcal{R}_i	\mathcal{R}_{ij}	C _x		
:	÷	:	•	÷		
т	0	1 if $v \in V_i$	0	k-1 if $v = x$		
\mathcal{D}_{v}		else 0	0	else 0		
:	:	:	:	:		
\mathcal{D}_{uv}	0	0	0	0	1 if $u \in V_i$ &	1 if $u, x \in V_{i'}$
		0	$v \in V_j$, else 0	& $u \neq x$, else 0		
	:			:		

Voting Profile:

- Let ℓ be a large constant.
- For district D with ν voters, add ℓ − ν dummy candidates, and a distinct dummy voter to each.
- Let $F = \ell k^2$.

Voting Profile:

- Let ℓ be a large constant.
- For district D with v voters, add ℓ − v dummy candidates, and a distinct dummy voter to each.
- Let $F = \ell k^2$.
- District D₀: Designed such that all main candidates (c_ν) get overall F + k − 2 votes and the challenger candidates (R'_is and R'_{ij}s) get overall F votes.
- w gets 0 votes overall.
- $\gamma_{\mathcal{D}_0} = 0$, $\gamma_D = \ell$ for all other districts D.

Attack Plan:

- Our strategy will be to transfer all (i.e. ℓ) votes in selected districts to w.
- Final score of w will be $\ell k^2 = F$.
- All the candidates \mathcal{R}_i 's, \mathcal{R}_{ij} 's and c_v 's are above w
- Need them to lose at least 1, 1 and *k* 1 votes respectively.

• $k = 3, \ell = 3, F = 27$

•
$$\Re_i = 27$$
, $\Re_{ij} = 27$, $c_v = 28$

- $\mathcal{R}_R, \mathcal{R}_G, \mathcal{R}_B$ decreases by 1
- $c_{r_1}, c_{g_2}, c_{b_1}$ decreases by 2

- $\mathcal{R}_{\textit{RG}}$ and $\mathcal{R}_{\textit{GR}}$ decreases by 1
- $\mathcal{R}_{RB}, \mathcal{R}_{BR}, \mathcal{R}_{GB}$ and \mathcal{R}_{BG} also decrease by 1

- $\mathcal{R}_{\textit{RG}}$ and $\mathcal{R}_{\textit{GR}}$ decreases by 1
- $\mathcal{R}_{RB}, \mathcal{R}_{BR}, \mathcal{R}_{GB}$ and \mathcal{R}_{BG} also decrease by 1

- c_{r2} loses 2 votes.
- c_{g_1} also loses 2 votes.

- c_{r_2} loses 2 votes.
- c_{g_1} also loses 2 votes.

Forward Direction:

- Multi-colored clique S of size k.
- Select the k primary districts and 2^k₂ secondary districts corresponding to vertices and edges of S.
- Transfer all ℓ votes in each district to w.
- All challenger candidates lose 1 vote each.
- Dummy candidates may have 0 or 1 vote.

Forward Direction:

- Main candidates corresponding to *S* lose *k* 1 votes from their corresponding primary district.
- Let S ∩ V_i = {v_i}. For any other u ∈ V_i, c_u loses 1 vote each from the districts corresponding to the k − 1 edges of v_i in S. Thus, c_u loses k − 1 votes too.
- w has ℓk² = F votes while everyone else has ≤ F − 1 votes. Hence, w wins.

- Attacker has strategy \mathcal{Z} s.t $|\mathcal{Z}| \leq B_{\mathcal{A}} = k^2$.
- Observe that max score possible for w is $\ell k^2 = F$
- $\mathcal{R}'_i s$ must lose at least 1 vote, as they have F votes and are above w in order.
- There must be at least one primary district corresponding to a vertex from V_i, for all i ∈ [k].
- Attacker is forced to manipulate in k(k 1) secondary districts to drop the votes of candidates R'_{ii}s by 1.
- This completes the budget: k primary districts and k(k-1) secondary districts.

- **Claim:** The selected districts must correspond to a multicolored clique in *G*.
- Let {v₁,...v_k} be the vertices whose corresponding primary district is attacked, v_i ∈ V_i.
- Suppose (v_i, v_j) ∉ E(G). Challenger candidates R_{ij} and R_{ji} force attack in secondary districts corresponding to edge with endpoints in V_i and V_j.
- Suppose \mathcal{D}_{xy} was attacked, with $x \in V_i$ and $y \in V_j$ to reduce the votes of \mathcal{R}_{ij} .

- Suppose, wlog, $x \neq v_i$.
- It is required that c_x loses at least k − 1 votes. But, c_x doesn't lose votes in primary districts, and it loses votes in atmost k − 2 secondary districts, as it loses no votes in D_{xy}.
- Score of c_x decreases by at most k 2.
- *c_x* has a clear chance of winning over *w*. Definitely, *w* doesn't win. **Contradiction!**

- All FPT results for PV-REC and PV-MAN carry over to PD-REC and PD-MAN respectively.
- PD-REC is W[1]-hard with defender budget as parameter. (Reduction from MULTI-COLORED CLIQUE)
- PD-MAN is W[1]-hard with attacker budget as parameter. (Reduction from PD-REC)

- $\bullet~\mathrm{PV}/\mathrm{PD}\text{-}\mathrm{Man}$ parameterized by no. of districts.
- Identifying and working with structural parameters.
- Working with structured profiles like single-peakedness.

Questions?

References i

- DOWNEY, R. G., AND FELLOWS, M. R.
 Parameterized Complexity.
 Springer, 1999.
- ELKIND, E., GAN, J., OBRAZTSOVA, S., RABINOVICH, Z., AND VOUDOURIS, A. A.
 Protecting elections by recounting ballots.
 In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI) (2019), pp. 259–265.

References ii

 Fellows, M. R., HERMELIN, D., ROSAMOND, F. A., AND VIALETTE, S.
 On the parameterized complexity of multiple-interval graph problems. *Theor. Comput. Sci 410*, 1 (2009), 53–61.

PIETRZAK, K.

On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems.

J. Comput. Syst. Sci 67, 4 (2003), 757–771.